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Abstract

The performance of elliptic disc fins has been analyzed using a semi-analytical technique. It has been shown that the efficiency of such
fins can also be predicted very closely using the sector method. However, the equivalent annulus method is not suitable for this fin geom-
etry. A method for the optimum design of fins, using a constraint of either fin volume or rate of heat dissipation has also been suggested.
Optimum elliptical fins dissipate heat at a higher rate compared to an annular fin when space restriction exists on both sides of the fin.
Even when the restriction is on one side only, the performance of elliptical fin is comparable to that of eccentric annular fin for a wide
parametric range.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Fins or extended surfaces are frequently used in heat
transfer equipments to increase the surface area, and, con-
sequently, to augment the rate of heat transfer between the
primary surface and the surrounding fluid. The selection of
any particular type of fin depends mainly on the geometry
of this primary surface. Radial or annular fins are one of
the most popular choices for enhancing the heat transfer
rate from the primary surface of cylindrical shape. It is well
known that the rate of heat transmission from the fin
decreases with the increase of fin length and hence, the
entire heat transfer surface of a fin may not be equally uti-
lized. For this reason, there is a continuous effort by the
designers to determine the optimum fin that will maximize
the rate of heat transfer for a specified fin volume or min-
imize the fin volume for a given heat duty. This fin optimi-
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zation problem can be classified into two categories. In the
first category, for a desired heat transfer, the fin shape (or
fin profile) and all its dimensions are determined in such a
way that the amount of material required is the minimum.
Alternatively, given a fin profile, dimensions are obtained
that satisfy the optimization conditions. The resulting fin
shape obtained using the first category of the optimization
technique is in general curved [1–7].

The resulting fin profile achieved through the first crite-
rion of the above two optimization techniques is always
difficult to manufacture. Moreover, the fins with optimum
profile are long and narrow; they need larger space and are
weak near the tip. From the application point of view, the
second kind of optimization approach is more popular.
Following this approach attempts have been made to
design fins with triangular as well as trapezoidal profile
to gain a shaving in fin material. Smith and Sucec [8]
derived analytically the efficiency of circular fins of triangu-
lar profile by using Frobenius method. Kundu and Das [9]
addressed the analytical solution for the performance
and optimization of straight taper fins with variable heat
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Nomenclature

a, b length of the semi-major and semi-minor axes
respectively of an elliptical fin (m)

A, B dimensionless major and minor axes lengths a/ri

and b/ri respectively
B0 dimensionless parameter used in Eq. (13)
Bi Biot number based on the surface heat transfer

coefficient, hri/k
Bit Biot number based on the tip heat transfer coef-

ficient, htri/k
Cj dimensionless unknown constants, determined

from Eq. (6)
e eccentricity (m)
Eij defined in Eq. (7)
F hyper geometric function
Fi defined in Eq. (8)
G variable defined in Eq. (9)
h surface convective heat transfer coefficient

(W/m2K)
ht convective heat transfer coefficient at the tip

(W/m2K)
Im(Z) modified bessel function of first kind of order m

and argument Z
k thermal conductivity of the fin material (W/mK)
Km(Z) modified bessel function of second kind of order

m and argument Z
n total number of nodal points taken on the tip

boundary
q actual heat transfer rate through the fin (W)
Q dimensionless actual heat transfer rate,

q/[4pkri(Tb � Ta)]

qi ideal heat transfer rate (W)
Qi dimensionless ideal heat transfer rate,

qi/[4pkri(Tb � Ta)]
r radial distance starting from the tube centre (m)
R dimensionless radial distance, r/ri

RS space restriction, see Fig. 1(b) and (c)
ri outer radius of the tube (m)
rt radial tip distance from the centre of the tube

(m)
Rt dimensionless radial tip distance, rt/ri

t semi-thickness of an elliptic fin (m)
Ta surrounding ambient temperature (K)
Tb fin base temperature (K)
U dimensionless fin volume, v=2pr3

i
v fin volume (m3)
Z0 dimensionless fin parameter,

ffiffiffiffiffiffiffiffiffiffi
Bi=n

p

Greek symbols
b dimensionless tip loss, Bitn/Bi
e dimensionless eccentricity, e/ri

g fin efficiency
/ angular position measuring from the tube centre

(rad)
X fin effectiveness
wi angle, defined in Eq. (10) (rad)
h dimensionless fin surface temperature, (T � Ta)/

(Tb � Ta)
n dimensionless thickness, t/ri
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transfer coefficient. Aziz [10] demonstrated thoroughly the
steps for the determination of the optimum dimensions of
fins for all types of common profile shapes.

Although fins with a variable thickness economizes the
use of costly fin material, the constant thickness fins are
extensively used in heat exchange applications mainly due
to the ease of manufacturing and for simple design. The
thermal analysis of concentric annular fins with constant
thickness was first investigated by Harper and Brown
[11]. Brown [12] determined the optimum dimensions of
this fin. Kundu and Das [13] proposed a step change in
thickness for radial disc fins to achieve material saving.
On the other hand, where, a restriction of space exists on
one side of the tubes or there exists an angular variation
of tube temperature, fins may be designed with an eccentric
annular shape [14] for a better dissipation of heat.

Circular or concentric annular geometry is mostly pre-
ferred in heat transfer equipment design. They are not only
easy to fabricate but their analysis is also simple due to a
radial symmetry. However, shapes with a radial symmetry
are always the best choice. For example, the pressure drop
due to flow past circular tubes can be reduced if tube shape
is changed to elliptic one. The performance of fin-tube heat
exchangers with elliptic tubes was first studied numerically
by Brauer [15]. Recently, Kundu et al. [16] have determined
the performance and optimum dimensions of plate fin cir-
cumscribing elliptic tubes by using FEM technique. Lin
and Jang [17] analyzed numerically the efficiency of elliptic
fin circumscribing an elliptic tube under dry, partially wet
and fully wet conditions.

In a two-dimensional plane, when a space restriction is
there on one particular side, one can select eccentric annu-
lar fins [14] in lieu of concentric annular fins and can still
reduce the weight of the design. On the other hand, if space
restriction is there along one particular direction, while the
perpendicular direction is relatively unrestricted elliptic fins
could be a good choice for material saving. Elliptic fins
posses other advantages also. Thermal designers face a
challenge of accommodating continuously increasing
power density within a given volume and envelope shape.
This demands non-conventional and innovative design of
heat sinks. However, to the best of the authors’ knowledge,
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2D analysis of elliptic fins circumscribing circular tubes has
not been attempted so far. This has motivated the present
investigation.

The first objective of the present work is to present a
well posed mathematical model for determining the tem-
perature field in the elliptic fin using a semi-analytical tech-
nique. Fins with constant base temperature and with heat
dissipation from the fin surface to surroundings solely by
convection have been considered in this analysis. The pres-
ent semi-analytical model has been validated with the exist-
ing closed form solution for the limiting case of concentric
annular disc fin [12]. The fin performance of the elliptic fin
also predicted by the equivalent annulus and sector method
has been compared with the present method of solution. It
has been observed that the result of the sector method gives
slight under prediction whereas the result calculated from
the equivalent annulus method show over prediction. A
comparative study has also been carried out between the
fin performance of elliptic fins and with the eccentric [14]
and concentric [12] disc fins.

The second objective is to develop a comprehensive
scheme for optimization of elliptic fin. The optimization
has been presented in a general form in which either the
rate of heat transfer or the fin volume is considered as a
constraint while the eccentricity is specified a priory. Opti-
mization of elliptic fin has been demonstrated for a
restricted fin dimension on both side of the tube also.
Finally, a comparative study of the heat transfer through
an elliptic fin and with both a concentric and an eccentric
disc fins for an optimal design condition has been made.
The results show that the elliptic fin is a better choice for
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Fig. 1. Circumferential fin circumscribing a circular tube: (a) Schematic diagra
side; (c) Possible concentric and elliptic fins for a space restriction on both side
conditions.
transferring heat with an identical fin volume and eccen-
tricity. For a constant space restriction on one side of the
tube, the heat transfer from the optimum elliptic fin is mar-
ginally lower in comparison with the optimum eccentric fin.
However, for a space restriction on both sides, the elliptic
fin is the always better option for transferring heat with
respect to concentric fin.
2. Mathematical model

To analyze the heat transfer from an elliptic fin circum-
scribing a circular tube (Fig. 1), certain idealizations are
made. It is assumed that the fin exchanges heat with ambi-
ent medium (existing at a constant temperature) solely by
convection and the convective coefficient is uniform along
the fin surface. Further, there is no temperature gradient
normal to the fin surface. Based on the above idealizations,
the steady state energy equation for constant conductivity
of the fin material and uniform temperature at the fin base
can be written in dimensionless form in a cylindrical polar
coordinate system as:

o

oR
R

oh
oR

� �
þ 1

R
o2h

o/2

� �
¼ Z2

0Rh ð1Þ

From Fig. 1, it can be seen that the axes of the elliptic fin
divides it into of four geometrical symmetric modules.
Based on the assumptions made above, the geometrically
symmetric modules are also symmetric from heat transfer
point of view. It is sufficient to analyze any one of
these modules [as shown in Fig. 1(d)] for determining the
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m of an elliptic fin; (b) Probable fin geometries in case of restriction on one
s of the tube and (d) Computational domain MNOPM with the boundary



176 B. Kundu, P.K. Das / International Journal of Heat and Mass Transfer 50 (2007) 173–180
performance of the fin as a whole. The physical boundary
conditions are taken as follows: the temperature of the
outer periphery of the tube MN is constant; there is no
net heat conduction across the section NO and MP due
to symmetry. Either insulated or convection heat transfer
may be considered at the fin tip OP. Thus, these boundary
conditions can be mathematically expressed as follows:

h ¼ 1 at R ¼ 1ð0 6 / 6 p=2Þ ð2aÞ
oh=o/ ¼ 0 at / ¼ 0ð1 6 Rt 6 AÞ ð2bÞ
oh=o/ ¼ 0 at / ¼ p=2ð1 6 Rt 6 BÞ ð2cÞ

and

oh=oN ¼ �bZ2
0h at R ¼ Rtð0 6 / 6 p=2Þ ð2dÞ

where

Rt ¼ AB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 sin2 /þ B2 cos2 /

q�
ð3Þ

and

b ¼ Bitn=Bi ð4Þ

It may be noted that, Eqs. (2a)–(2c) can be satisfied
exactly at the physical boundaries in the polar coordinate
system. However, neither polar nor cartesian coordinate
can exactly satisfy the boundary condition at the fin tip.
Nevertheless, the fourth boundary condition (2d) can be
satisfied at a large number of discrete points along this
boundary. With the first three boundary conditions Eqs.
(2a)–(2c), Eq. (1) can be solved by employing the separa-
tion of variables as

h� I0ðZ0RÞ
I0ðZ0Þ

¼
X1
j¼1

Cj
cosf2/ðj� 1Þg

I2j�2ðZ0Þ

� �
I2j�2ðZ0Þ I2j�2ðZ0RÞ
K2j�2ðZ0Þ K2j�2ðZ0RÞ

����
����
ð5Þ

The above temperature field is dependent on the constants
‘‘Cj”. For the determination of these constants, Eq. (2d)
can be employed at discrete points along the fin tip and it
can be expressed as

X1
j¼1

EijCj ¼ F i for i ¼ 1; 2; 3; . . . ;1 ð6Þ

where

Eij ¼
0 �Z0Rt cosðwi � /iÞ G

I2j�2ðZ0Þ I2j�2ðZ0RtÞ I2j�1ðZ0RtÞ
�K2j�2ðZ0Þ �K2j�2ðZ0RtÞ K2j�1ðZ0RtÞ

�������

�������
ð7Þ

F i ¼
Z0

I0ðZ0Þ
cosðwi � /iÞ �bZ0

I0ðZ0RtÞ I1ðZ0RtÞ

����
���� ð8Þ

G ¼ 2ðj� 1Þfcosðwi � /iÞ � tan½2/ðj� 1Þ� sinðwi � /iÞg
þ Z2

0Rtb ð9Þ
wi ¼ tan�1ðA2 tan /i=B2Þ ð10Þ
and the suffix ‘i’ is the ith point on the boundary. Theoret-
ically, infinite numbers of points are required to satisfy Eq.
(6) for obtaining the closed form result. However, in prac-
tice, a finite number of equations are only considered. The
number (say n) is chosen in such a way that the final result
yield a desired accuracy. To determine the unknown con-
stants, the algebraic equations can be solved by Gauss–Elli-
mination method. After getting the unknown constants,
one can calculate the dimensionless heat transfer rate Q as

Q ¼ q
4pkriðT b � T aÞ

¼ n½C1 � Z0I1ðZ0Þ�=I0ðZ0Þ ð11Þ

Ideal or maximum possible rate of heat transfer from
the fin Qi is calculated if the fin surfaces were maintained
at its base temperature. In dimensionless form this can be
expressed as

Qi ¼
qi

4pkriðT b � T aÞ

¼ BiðAB� 1Þ
2

þ 2BiAb
p

Z p=2

/¼0

d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B0 sin2 /

q ð12Þ

where

B0 ¼ e2=ðe2 � 1Þ ð13Þ
and

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2=A2

q
ð14Þ

Eq. (12) can be integrated numerically using the Simson’s
1/3 rule to yield the ideal heat transfer rate. However, an
analytical expression for the ideal heat transfer rate can
be obtained by integrating the above elliptic integral equa-
tion as

Qi ¼ Bi
ðAB� 1Þ

2
þ AbF

1

2
;
1

2
; 1; B0

� �� �
for jB0j < 1

ð15Þ
where F is the hyper geometrical function [18].

Fin efficiency is expressed conventionally as

½g� ¼ ½Q=Qi� ð16Þ
Fin effectiveness can be expressed as follows:

X ¼ ½C1 � Z0I1ðZ0Þ�½nZ2
0I0ðZ0Þ� ð17Þ
3. Optimization

The volume of an elliptic fin subscribing a circular tube
is given by

U ¼ V
2pr3

i

¼ ðAB� 1Þn ð18Þ

From Eqs. (11) and (18), it is perceived that both the
dimensionless heat transfer (Q) and fin volume parameter
(U) are dependent on the design variables n, A and B. It
is of interest to note that the elliptic fin is converted to a
circular fin at the optimum design condition if both the
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design parameters A and B are varied. Therefore, the opti-
mization of elliptic fins is possible only if either A or B is
specified a priory. It has been discussed earlier that, if there
is a space restriction imposed on both sides of the tube, the
freedom of varying the minor axis of the elliptic fin gets re-
stricted (see Fig. 1(b) and (c)). Accordingly the dimension
B is considered as the design constant. Using Lagrange
multiplier technique, the optimality criteria [19] is obtained
for given thermo-geometric parameters and design con-
straint B as follows:

½oQ=oA�½oU=on� � ½oQ=on�½oU=oA� ¼ 0 ð19Þ

Using Eqs. (11) and (18), the above equation can be written
as

2n
oC1

on
� 2ðAB� 1Þ

B
oC1

oA
þ Q½2I0ðZ0Þ þ Z0I1ðZ0Þ�

n

þ 2Z0I1ðZ0Þ þ Z2
0I2ðZ0Þ ¼ 0 ð20Þ

The derivative of C1 may be determined by differentiating
Eq. (6)

½oEij=on�½Cj� þ ½Eij�½oCj=on� ¼ ½oF i=on� ¼ 0

½oEij=oA�½Cj� þ ½Eij�½oCj=oA� ¼ ½oF i=oA� ¼ 0

	
ð21Þ

For the determination of roots of Eq. (20), one constraint
equation is necessary. Either heat transfer (Eq. (11)) or fin
volume (Eq. (18)) can be taken as a constraint. The gener-
alized Newton-Raphson method [20] is used to determine
the optimum dimensions. To perform this calculation, it
is required to determine the values of o2C1/on2, o2C1/onoA

and o2C1/oA2 in the every iteration. These values are ob-
tained by differentiating Eq. (21) with respect to n and A.
And the systems of simultaneous linear equations are
solved. In each iteration, the initial guess values of the
roots are chosen in such a way that the condition of con-
vergence has been satisfied [20]. The above process can be
repeated till the root is obtained to a desired accuracy. In
this study, the value of optimum dimensions has been cal-
culated considering significant values upto six decimal
places.

4. Results and discussion

Based on the above analysis, the performance of ellipti-
cal fins has been estimated for a wide range of thermo-geo-
metric parameters. Some of the salient results are presented
in this section.

At the outset, an attempt has been made to examine the
validity of the semi-analytical technique adopted in the
present work. Unfortunately, there is no analytical result
for the performance of 2D elliptical fin. However, in the
limiting case, an elliptical fin becomes a concentric annular
fin when the semi-minor axis approaches the semi-major
axis. For this case, closed form analytical expression is
available. A comparison between the closed form expres-
sion and the results obtained from the semi-analytical tech-
nique depicts an excellent agreement (Fig. 2).
The solution of Eq. (5) enables one to find out the tem-
perature at any point of the elliptic fin. The isotherms in the
elliptical fins for different geometry are shown in Fig. 3.
Though the radial symmetry of the temperature field disap-
pears slightly away from the tube wall, the field is symmet-
ric about the axes. The occurrence of extrema for different
isotherms on the major axis depicts a typical characteristic
of this unique fin geometry. It is interesting to note that,
though the isotherms have their extremum on the major
axis, their trend changes as one move from the fin base
to fin tip along this axis. On the other hand, slightly away
from the base the isotherms never show a tendency to close
on the minor axis. This clearly brings out the two-dimen-
sional effect in heat conduction.

Next, the results of the semi-analytical technique have
been compared with those obtained from the approxi-
mate techniques. For the estimation of fin performance,
two approximate techniques namely equivalent annulus
method and sector method [21] are commonly used. Both
of them have been tried in the present case and the results
are shown in Fig. 4. As the fin parameter Z0 increases, the
equivalent annular technique grossly over predicts the
results obtained from the semi-analytical technique. On
the contrary, the result obtained from the sector method



0.0 0.4 0.8 1.2 1.6 2.0
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
A = 1.8
B = 1.2
ξ = 0.01
β = 0.0

 Equivalent Annulus
 Semi-analytical
 Sector

η

Z0

Fig. 4. Efficiency of an elliptic fin predicted by different methods.

178 B. Kundu, P.K. Das / International Journal of Heat and Mass Transfer 50 (2007) 173–180
closely follows the semi-analytical technique. As the sector
method slightly under predicts the results it can safely be
used for design calculations. It may be noted that the cal-
culation by the sector method has been done by the tech-
nique modified by Kundu and Das [22].
0.0 0.4 0.8 1.2 1.6 2.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0
U = 0.02
ψ = 0.01
β = 0.02

 Annular (ε = 0)
 Elliptic (ε = 0.75)
 Eccentric (ε = 0.75)

η

0.0 0.4 0.8 1.2 1.6 2.0
50

60

70

80

90

100

110

U = 0.02
ξ = 0.01
β = 0.02

 Annular (ε = 0)
 Elliptic (ε = 0.75)
 Eccentric (ε = 0.75)

Ω

Z0

Z0

Fig. 5. Comparison of the fin performance of different fins for the same
surface area and thermo-physical parameters: (a) Fin efficiency and (b) Fin
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A comparison of efficiencies of three different fins: annu-
lar, elliptical and eccentric annular has been presented in
Fig. 5(a). The eccentricity of both the elliptic and eccentric
fins has been taken as 0.75. It may be noted that the geo-
metric definitions of the eccentricity for ellipse and eccen-
tric annulus are different. For an ellipse, it is a function
of minor and major axes while for an eccentric annulus;
it is given by the centre distance of the inner and outer cir-
cles [14]. For identical operating conditions, the efficiency
of the annular fin is the maximum while it is a minimum
for eccentric annular fin. Similar conclusion can be drawn
when the effectiveness of the three fins is compared
(Fig. 5(b)). This clearly depicts that for plate fin circum-
scribing circular tubes the loss of symmetry has an adverse
effect on fin efficiency. As the eccentric annular fin has only
one axis of symmetry it has the least efficiency. It may not
be out of place to mention that in fin-tube heat exchangers
the highly symmetric equilateral triangular array of tubes
results in a higher efficiency compared to other arrange-
ments. The geometric and thermal symmetries are therefore
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to be exploited fully unless there are constraints due to pro-
cess requirement and manufacturing considerations. Differ-
ent parametric values do not change the nature of the
curves shown in Fig. 5, though the quantitative values of
the performance parameter change.

In the rest of this section the characteristics of the opti-
mum fins are presented. Fig. 6(a) depicts the variation of
the optimum rates of heat transfer from the three different
fins for identical fin volumes. The eccentricity of the non-
circular fins has been taken as 0.75. In this case also, the
annular and eccentric fins depict the maximum and mini-
mum heat transfer rates respectively. The analysis is also
made imposing a space restriction on one side of the fin
(RS = 1.5) and the results are shown in Fig. 6(b). It may
be noted that the rate of heat dissipation is comparable
for the two non-circular fins and is substantially higher
than that of the annular fin. Moreover, this difference
increases with the increase of the fin volume. Similar trend
is obtained for other parametric ranges. This result clearly
justifies the design of non-circular fins in the presence of
space restriction.

The variation of the performance of two types of non-
circular fins with eccentricity is given in Fig. 7. It can be
seen that the performance of elliptic fins remains almost
constant for a large range of eccentricity and then falls
drastically. Moreover, the performance of the elliptic fin
is superior to that of the eccentric fin up to a value of eccen-
tricity approximately 0.9. It may be noted that the geomet-
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Fig. 7. Optimum elliptic and eccentric fins as a function of eccentricity for:
(a) U = 0.4; (b) Bi = 0.05.
rical definition of eccentricity for these two types of fins are
different. A value of eccentricity of 0.9 reduces the minor
axis of the elliptic fin to such an extent that along this
axis the fin tip comes very close to the fin base. An eccentric
fin also suffers from a loss of symmetry and deterioration in
heat transfer with the increase of eccentricity. However, the
thermal degradation of the eccentric fin is not so drastic at
this range of eccentricity for the other parametric values
chosen in the example. This example clearly brings out
the large design range available for elliptic fins and the
limiting condition where the use of such fin may not be
justifiable.

5. Conclusions

The heat transfer from elliptical disc fin circumscribing
circular tubes has been analyzed in the present work. A
semi-analytical technique has been adopted to determine
the temperature field in this unique geometry. It has also
been demonstrated that the sector method, which is an
approximate technique gives a close but conservative esti-
mate of the fin efficiencies and can safely be used for design
calculations.

A calculus-based technique has been used for the opti-
mum design of elliptical fins. By this approach one can
design either a minimum volume fin for a given rate of heat
dissipation or can maximize the heat transfer rate for a
given fin volume. It has been shown that the elliptical fin
competes well with the eccentric annular fin for certain
range of thermo-geometric parameters, where there exists
a space restriction on one side of the fin. Rate of heat dis-
sipation from an optimum elliptical fin can be substantially
higher than that from concentric annular fin when space
restriction exists on both sides of the fin. It has also been
demonstrated that the advantage of selecting an elliptic
fin in lieu of a concentric circular fin becomes a maximum
at a particular fin volume.
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